
Analysis on Some Defences against SYN-Flood
Based Denial-of-Service Attacks

Sau Fan LEE
(ID: 3484135)

Computer Science Department,
University of Auckland

Email: slee283@ec.auckland.ac.nz

Abstract

A denial-of-service (DoS) attack is a type of resource-depleting attack on a

system such that the system will no longer be able to take further requests from

legitimate users. Usually, this type of attacks is network-based and accomplished by

network-traffic flooding or by exploiting known vulnerabilities that is present in the

server’s system. A well-engineered DoS attack is very difficult to detect and is

therefore a great threat to the Internet security today. Because of this, it is virtually

impossible to find a solution that will solve all possible problems caused by DoS

attacks. Different counter-measures must be applied in different situations (and

locations) to reduce the number of DoS attacks and the damage done by them. In

recent years, numerous proposals have been made in an attempt to solve various

problem areas of DoS attacks. In this paper, We will focus only in one area of DoS

attacks, known as TCP SYN-flooding. We will examine and compare the

effectiveness and efficiency of 2 different counter-measures against this type of

attacks, namely GENESIS and SYN Cookies.

1. Introduction

TCP/IP has now become an essential communications protocol in both local and

wide area networks. However, the current implementation of the Internet Protocol,

IPv4, has many flaws in its design, especially in terms of security. One of the most

difficult to solve problems that companies face today is to defend against DoS

(Denial-of-Service) attacks. Web-servers are especially vulnerable to DoS attacks,

and a lot of efforts and research have been spent on finding ways to prevent DoS

attacks from reaching the web servers or to allow web servers to continue serving

legitimate users even in the presence of DoS attacks.

In 1ate 1996, D. J. Bernstein from University of Illinois and Eric Schenk from

University of Toronto have devised a method of allowing a web-server to continue

serving pages even after its connection resources are depleted by DoS attacks. This

method is called SYN cookies and was later proven useful and was adopted into some

UNIX and Linux builds.

In early 2002, another Internet security analyst by the name of Steve Gibson

have devised a similar counter-measure, called GENESIS, that will allow web servers

to distinguish between legitimate and fake requests to the server in order to filter out

bad requests generated by DoS attacks. Although Gibson claimed that he had

developed the method completely independently with no knowledge of the former

counter-measure, his own counter-measure utilize the same concept but with slightly

different implementation. GENESIS has not gone through extensive third party

analysis and is therefore not widely known. However, as Gibson’s influence in the

general public is quite large, I decided to analyse the GENESIS system so that other

people may get some feedback on the effectiveness and efficiency of this system

when considering of using it. Since GENESIS is very similar to SYN Cookies in their

architecture, direct comparisons can be made in many cases. Hence, criticisms and

analysis done by experts on SYN Cookies can be re-iterated here.

In the following sections, we will first begin with some basic definitions in

Section 1 that are relevant to our discussions in later sections, followed by

descriptions on how each of the 2 systems works in Section 2. In Section 3 we will

analyze and compare the effectiveness and efficiency of the algorithms used in the 2

systems, and finish with conclusions in Section 4.

1. What is DoS?

DoS is an acronym for Denial of Service attacks. It is a generic term that refers

to an resource-depleting attack on a server on a network or on the Internet such that

the server would no longer be able to serve legitimate users. The term DoS does not

define what mechanisms are being used in such an attack, as there are many ways a

DoS attack can be achieved. and mechanisms to achieve this, and DoS does not itself

does not define what, as there can be many ways of it is usually done either by

exploiting a known vulnerability of the server software in order to crash or cripple the

server, or by flooding the server with excessive amount of traffic such that all

available resources on the server are consumed, rendering the server incapable of

serving further requests from legitimate users.

Classic DoS attacks consist of only one machine attacking the victim. Usually, a

single machine is not powerful enough to consume all the bandwidth that the server

has, therefore a bandwidth-depleting DoS attack is normally not feasible. However,

Other forms of resource-depleting attacks can be done, such as exploiting known

vulnerabilities of the server software in order to crash or cripple the server, or by

exhausting the memory resource of the server through TCP SYN-flooding, which we

will be explained in more details later.

DDoS, on the other hand, uses multiple computers to conduct an attack against a

single server. DDoS stands for Distributed Denial of Service attacks. It is a distributed

attack in the sense that an attacker first compromise a large number of intermediate

hosts and then use them to attack the victim simultaneously. This kind of attack

requires the user to first infiltrate a large number of other computers before a DDoS

attack can be conducted. It is very difficult to trace the original attacker of a DDoS

attack as the attacker himself usually does not participate in the attack, but rather, he

let the compromised hosts do all the dirty work for him. DDoS attacks are now very

common and are primarily used for consuming up the bandwidth resource of the

server.

TCP SYN flooding is a type of DoS attack that generates many bad TCP SYN

packets. In a normal connection between the client and the server using TCP, the

client first initiate the connection using a TCP SYN packet, then the server responded

with a SYN/ACK packet, and then finally the client returns an ACK packet to establish

the connection. This is commonly known as a 3-way handshake. In a TCP SYN

attack, the client (attacker) initiates a 3-way handshake but never finishes it. In other

words, it only ever sends TCP SYN packets, with no final ACK packets. This will

cause the server to reserve a memory slot for each unfinished connection. Once the

server’s memory is filled up with unfinished connections due to flooding of these

packets, the server will stop accepting any more incoming requests until these

memory slots are freed. Usually, these TCP SYN packets uses bogus IP addresses to

prevent tracing of the attacker. Non-existent IP addresses will also ensure no replies

are returned to the server.

Although TCP SYN flooding can be conducted using one computer, it is more

often done using multiple computers (DDoS). Moreover, advanced attacks such as

DRDoS (Distributed Reflection DoS) can be conducted using TCP SYN flooding.

DRDoS is similar to SMURF attacks except that TCP SYN packets are used in place

of ICMP Echo requests. In other words, in a DRDoS attack, the attacker sends a large

number of TCP SYN packets to intermediate hosts using the victim’s IP address as

the source address. The intermediate hosts (called reflectors) will in turn reply to the

victim with a massive number of SYN/ACK packets. If the victim does not reply (due

to overloaded traffic) within a certain period, the reflectors will think the packets may

be lost somewhere in transit, so they will resend the SYN/ACK packets, which will

add more traffic to the victim. DRDoS is a relatively new form of attack and is more

difficult to prevent since the SYN/ACK packets are actually legitimate responses

from the reflectors. The reflectors themselves may not be able to tell that they are

participating in a DRDoS attacks as the volume of incoming TCP SYN packets are

usually not high enough to be considered as flooding. This is because the TCP SYN

packets are evenly distributed across multiple reflectors, where each reflector only

receives a small share of these packets.

In the following sections, we will take all these types of attacks into

consideration when analyzing GENESIS and SYN Cookies. There are also many

other types of DoS attacks besides the ones we had discussed here, but we do not

include them here as they are not relevant to our analysis of the 2 systems. For more

information on other common types of DoS attacks, please refer to [1] and [2].

2. The Inner Workings of SYN Cookies and GENESIS

The idea of SYN cookies is that the server tries to store authentication

information in the server sequence number of the SYN/ACK packets. This idea is

similar to cookies used in web sites where the server stores information of the current

session in a cookie and return it to the client together with the web page, hence the

name SYN cookies. When the server replies with a SYN/ACK packet, it uses a

specially designed formula to calculate the server sequence number (used as an

authentication cookie) and passed it into the SYN/ACK packet. The cookie value

calculated by the formula is determined by the source address, the source port, the

client address, the client port, the client sequence number, client MSS, a counter that

changes approximately every minute and a secret value that changes at every server

boot. These information are merged together and encrypted using the MD5 one-way

hash. When the client later replies with the ACK packet to complete the connection

establishment, theserver will verify the server sequence number of the ACK packet to

ensure the client is a legitimate user. Since the cookie is encrypted with a one-way

hash, it is difficult to reverse-engineer the cookie directly. The cookie formula is also

designed so that it will not give out a slightly smaller number than a recent value

between the same hosts and ports. This is to prevent confusion with older packets

from previous connections that may still be around.

Under normal situations when a web server’s memory resource is not exhausted,

the SYN cookies enabled server will act like any other normal web servers. That is, it

will allocate memory slots for each incoming TCP SYN request. However, once the

memory slots are used up, it will not allocate any more slots for the connections of the

incoming SYN packets. However, it will still send out the SYN/ACK packets with the

cookie as the server sequence number, but all the fancy and versatile features of TCP

such as large window scaling, selective ACKs, RFC1323 etc. will be disabled. When

a client returns with the ACK packet, the server will reproduce the cookie and

matches it with the cookie in the ACK packet. If the 2 cookies match, then the

authentication is successful. Note that the server also records the time of the last

memory-slot outage. If the outage is more than a while ago, the ACK packet will still

be rejected even if the cookie has the correct value. This expiry time is used to

invalidate any out-of-date cookies may have a same value as another cookie at that

moment. Also, due to the fact that the first 2 part of the handshake (SYN and

SYN/ACK) are not remembered, it is not possible for the server to resend lost

SYN/ACK packets to the client. For more detailed information on SYN Cookies,

please refer to [3].

GENESIS stands for Gibson's ENcryption-Enhanced Spoofing Immunity System.

It uses the same idea of SYN cookies in that it does not allocate any memory slots for

incoming SYN packet connections and uses authentication ‘cookies’ as the server

sequence number. However, there are a few notable differences. Firstly, this method

is used regardless of whether memory slots are available or not. In other words,

memory slots are not used at all on the server. Secondly, the encryption function used

is RC5 instead of MD5. Also, the cookie does not store any information on the MSS,

and there is no counter or secret value involved. Since there are no memory slots, the

time of the last memory outage is no longer relevant and therefore not used. For moer

detailed information, please refer to [4].

3.3. Analysis and Comparisons of SYN Cookies and GENESIS

SYN Cookies successfully allows a server to remain online even after its

memory resource is depleted. This achieves the primary goal of the SYN Cookies.

However, there are sacrifices made, as large window scaling, selective ACKs, RFC

1323, and resending of lost packets are no longer possible, making the server

inefficient when the memory resource is depleted. However, the fact that these

problems are acknowledged is a good thing as people will be aware of the risks

involved when they choose to use this system. But all in all, the system is good and

has served its goal. The only gripe I have is with its poor documentation. It is stored

in a raw unprocessed list of emails instead of an official well-formatted document.

GENESIS, on the other hand, does not remember the connections at all, making

the problems in SYN Cookies after memory depletion becoming permanent in

GENESIS. Because of this, from a certain point of view, the server actually becomes

worse than not using SYN protection at all, since its service is less than satisfied.

Also, the exclusion of MSS in GENESIS makes the web server very inefficient, as the

traffic speed cannot be optimized this way. Furthermore, the use of RC5 is somewhat

less safe as it is not a ‘one-way’ encryption. This enables an attacker to find out the

key of the encryption and use it for malicious means. Although the possibility of

finding the key before it expires is very low, it is still not as safe as a one-way hashes

like MD5. Another problem with RC5 is that it is significantly slower than MD5 as its

encryption algorithm involves a few rounds of encryption, whereas MD5 is equivalent

to a single-round encryption. So, in summary, GENESIS is not a very good solution

against DoS attacks.

If we refer back to the list of relevant DoS attacks in Section 2, both SYN

Cookies and GENESIS give (partial) solutions to DoS and DDoS attacks based on

TCP SYN flooding. Note my use of the word partial in the brackets. This is due to the

trade-offs involve in both systems when under DoS attacks. Also note that GENESIS

will still have the trade-offs even when not under attack. In terms of DRDoS attacks,

both systems will still serve their fuctions when they are the victims of the attacks.

However, when it comes to being a reflector of an attack against other sites, both

systems will happily participate in the attack. So the solutions provided for DRDoS

attacks in both systems only solve part of the problem. In terms of the documentation

of GENESIS, it is very well-written, easy to understand, and targets the average user

who has not much knowledge in computer science.

4. Conclusions

SYN Cookies, while having some trade-offs, are still good in defending against

TCP SYN floods. GENESIS, on the other hand, can also defend against TCP SYN

floods, but its permanent bad side effects/trade-offs renders it impractical to be used

in high volume sites. Both systems do not completely solve all the problems posed by

TCP SYN flooding, although the major problems are all solved.

References

[1] Brendel, Juergen. "Distributed Denial of Service - The current state and
 counter measures" Slides from NZISF meeting, Esphion Ltd. Auckland,
 New Zealand, February 2002.

[2] Lin, Denny Ping-Herng, “Survey of Denial of Service Countermeasures”
 [Paper Online] November, 2000;
 Available from http://www.lasierra.edu/~dlin/classes/cpsc433/cpsc433.htm
 Accessed May 28.

[3] Bernstein, Dan J. “SYN cookies” [article online] no date;
 Available from: http://cr.yp.to/syncookies.html
 Accessed April 2003.

[4] Gibson, Steve. “G.E.N.E.S.I.S. (Gibson's ENcryption-Enhanced
 Spoofing Immunity System)” [paper online] March 11, 2002;
 Available from: http://grc.com/r&d/nomoredos.htm
 Accessed April 2003.

